34,853 research outputs found

    Repulsive Casimir Pistons

    Get PDF
    Casimir pistons are models in which finite Casimir forces can be calculated without any suspect renormalizations. It has been suggested that such forces are always attractive. We present three scenarios in which that is not true. Two of these depend on mixing two types of boundary conditions. The other, however, is a simple type of quantum graph in which the sign of the force depends upon the number of edges.Comment: 4 pages, 2 figures; RevTeX. Minor additions and correction

    Novel Approach to Super Yang-Mills Theory on Lattice - Exact fermionic symmetry and "Ichimatsu" pattern -

    Get PDF
    We present a lattice theory with an exact fermionic symmetry, which mixes the link and the fermionic variables. The staggered fermionic variables may be reconstructed into a Majorana fermion in the continuum limit. The gauge action has a novel structure. Though it is the ordinary plaquette action, two different couplings are assigned in the ``Ichimatsu pattern'' or the checkered pattern. In the naive continuum limit, the fermionic symmetry survives as a continuum (or an O(a0)O(a^0)) symmetry. The transformation of the fermion is proportional to the field strength multiplied by the difference of the two gauge couplings in this limit. This work is an extension of our recently proposed cell model toward the realization of supersymmetric Yang-Mills theory on lattice.Comment: 26 pages, 4 figure

    The Attractor and the Quantum States

    Full text link
    The dissipative dynamics anticipated in the proof of 't Hooft's existence theorem -- "For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization" -- is constructed here explicitly. We propose a generalization of Liouville's classical phase space equation, incorporating dissipation and diffusion, and demonstrate that it describes the emergence of quantum states and their dynamics in the Schroedinger picture. Asymptotically, there is a stable ground state and two decoupled sets of degrees of freedom, which transform into each other under the energy-parity symmetry of Kaplan and Sundrum. They recover the familiar Hilbert space and its dual. Expectations of observables are shown to agree with the Born rule, which is not imposed a priori. This attractor mechanism is applicable in the presence of interactions, to few-body or field theories in particular.Comment: 14 pages; based on invited talk at 4th Workshop ad memoriam of Carlo Novero "Advances in Foundations of Quantum Mechanics and Quantum Information with Atoms and Photons", Torino, May 2008; submitted to Int J Qu Inf

    unreinforced masonry buildings

    Get PDF
    A recent earthquake of M=4.9 occurred on 29 October 2007 in C, ameli, Denizli, which is located in a seismically active region at southwest Anatolia, Turkey. It has caused extensive damages at unreinforced masonry buildings like many other cases observed in Turkey during other previous earthquakes. Most of the damaged structures were non-engineered, seismically deficient, unreinforced masonry buildings. This paper presents a site survey of these damaged buildings. In addition to typical masonry damages, some infrequent, event-specific damages were also observed. Reasons for the relatively wide spread damages considering the magnitude of the event are discussed in the paper

    CPA elderCare/primePlus services : a practitioner\u27s resource guide;

    Get PDF
    CD-ROM files converted to PDF and included after main texthttps://egrove.olemiss.edu/aicpa_guides/1105/thumbnail.jp

    Periodic orbit effects on conductance peak heights in a chaotic quantum dot

    Full text link
    We study the effects of short-time classical dynamics on the distribution of Coulomb blockade peak heights in a chaotic quantum dot. The location of one or both leads relative to the short unstable orbits, as well as relative to the symmetry lines, can have large effects on the moments and on the head and tail of the conductance distribution. We study these effects analytically as a function of the stability exponent of the orbits involved, and also numerically using the stadium billiard as a model. The predicted behavior is robust, depending only on the short-time behavior of the many-body quantum system, and consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure
    corecore